Q.P. Code: 16CE117

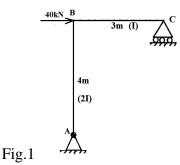
Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

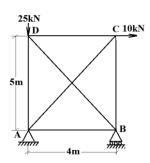
(AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations Nov 2018 STRUCTURAL ANALYSIS-I

(Civil Engineering)


(Answer all Five Units $5 \times 12 = 60$ Marks)

Time:3 hours Max Marks:60


UNIT-I

1. Determine the horizontal displacement of point 'C' of the bent shown in figure-1. Moments of inertia of the members are shown in figure. Young's modulus is constant. 12M

OR

2. Analyse the pin jointed frame shown in figure-2. Assume the cross-sectional areas of all the members are same. 12M

UNIT-II

3. A Fixed beam of span 6 m is subjected a uniformly distributed load of 5 kN/m on the left half of the span and a point load of 15 kN at the middle of the right half of the span. Draw the SFD and BMD

12M

OR

4. Analyse the continuous beam ABCD shown in the figure-3 using Clapeyron's theorem of three moments. Draw SFD and BMD.

Fig.3

16kN 18kN

6kN/m

V 2m C 2m V D

4m 4m 3m

UNIT-III

5. Analyse the continuous beam shown in figure-4 by slope-deflection method. Draw the bending moment diagram. 12M

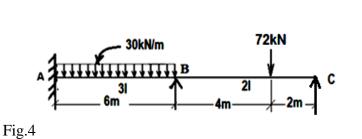
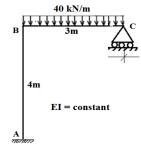
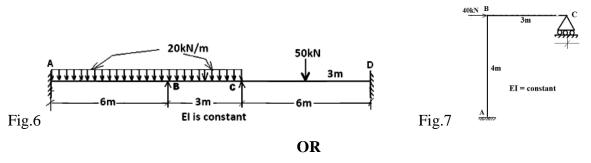



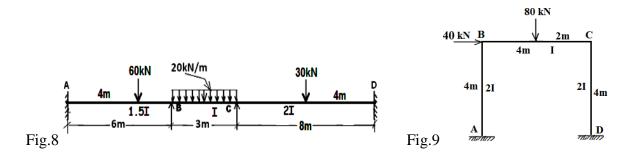
Fig.5



6. Analyse the frame shown in figure-5 using slope-deflection method. Draw the bending moment diagram. 12M

UNIT-IV

OR


7. Analyse the continuous beam shown in figure-6 by moment distribution method. The support B sinks by 10mm. Take $E = 2x10^5$ MPa and $I = 16x10^{-5}$ m⁴. Draw the bending moment diagram.

8. Analyse the frame shown in figure-7 using moment distribution method. Draw the bending moment diagram. 12M

UNIT-V

9. Analyse the continuous beam shown in figure-8 by Kani's method. Draw the bending moment diagram. 12M

OR

10. Analyse the frame shown in figure-9 using Kani's method. Draw the bending moment diagram. 12M